
ABSTRACT
In the years since the Convention on Biological Diversity 
was adopted, issues of traditional knowledge have come 
to affect the legitimacy of the multilateral trading system, 
in general, and its IP (intellectual property) aspects, in 
particular. In order to engage indigenous knowledge in 
furthering socio-economic development, policy-makers 
will need to reconsider the prevailing notion of a fun-
damental dichotomy between indigenous and scientific 
knowledge and begin to challenge both types of knowl-
edge. This chapter concentrates on traditional knowl-
edge—and how it relates to the ecology of agriculture, 
in all of its variants—and compares it to recent advances 
in scientific knowledge and the resulting applications of 
biotechnology in global agriculture. 

The chapter argues that this dichotomy between tra-
ditional and scientific ways of knowing is not only arti-
ficial but problematic, in that it hinders exchange and 
communication between the two. The dichotomy be-
tween traditional knowledge and scientific knowledge is 
most apparent in, and lies at the root of, perceived differ-
ences between the approaches of today’s organic farming 
and technology-intensive farming systems. While indeed 
there are important differences, traditional knowledge 
and scientific knowledge share important similarities. 
Knowledge, in both cases, is based on human observation 
and experience and is tested, replicated, and transmitted 
within its respective community through social insti-
tutions and mechanisms put in place for that purpose. 
Moreover, deeper examination of the genetic integrity of 
plants used within organic and biotechnology-based ag-
ricultural systems shows that the respective crop varieties 
being used under each system are more similar than they 
are different. Increasingly, organic farming is building on 
scientific knowledge, and agricultural biotechnology is 
seeking to draw on traditional knowledge.
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1. 	 Introduction: Global trends in 
biodiversity protection

Since the adoption of the Convention on 
Biological Diversity in 19921 the legal status of 
plant genetic resources and traditional knowledge 
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This chapter challenges policy-makers and scientists to 

examine and, ultimately, to move beyond those concep-
tual worldviews, or constructs, that maintain the current 
divide between traditional knowledge/organic agriculture 
and scientific knowledge/agricultural biotechnology. 

By building the bridge between traditional knowl-
edge and science and becoming free to draw upon the 
best existing ideas and practices from both, a larger palate 
is available to draw from. But, more importantly, by in-
tegrating the innovation systems of both traditional and 
scientific communities, a much larger range of new ideas 
and practices could be generated. The chapter calls such 
dynamic integration the “participatory approach” to agri-
cultural innovation, building upon the “unifying power of 
sustainable development” and leading to balanced choices 
in agricultural production chains and rural land use. 

Such an integration would require adaptations of 
Western social institutions and mechanisms of intellectual 
property in order to interface in a more nuanced fashion 
with quasi-public-domain knowledge that is external to 
the published records of Western science and IP systems. 
At the same time, indigenous communities will need to 
learn to adapt their social institutions and mechanisms 
that govern what is, in a sense, sovereign or communal 
property to coexist with and at times be translated into 
formal IP rights and practical uses that are external to 
their traditional systems.
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has received increasing attention in international 
fora, non-governmental organizations (NGOs), 
and academic research. Several factors have stim-
ulated this ongoing debate: the steady loss of bio-
diversity in plant genetic resources;2 the contrast 
between protected plant varieties and genetically 
engineered products, on the one hand, and tradi-
tional crops and landraces in the public domain, 
on the other hand; the advent of the Agreement 
on Trade-Related Aspects of Intellectual 
Property Rights (TRIPS) under WTO; and the 
International Treaty on Plant Genetic Resources 
for Agriculture.3 The Doha Agenda Ministerial 
Declaration4 explicitly endorsed the issue of tradi-
tional knowledge as a subject for further negotia-
tion. What was, some years ago, a concern limited 
to the ecological aspects of preserving biodiversity 
has moved to center stage. Today, policy-makers 
recognize that traditional knowledge affects the 
legitimacy of the multilateral trading system, in 
general, and its intellectual property aspects, in 
particular, as well as its interface with modern ag-
ricultural and environmental policies. 

One of the difficulties in advancing toward 
any resolution or consensus in this debate is the 
relationship between varying negotiation pro-
cesses in different fora. Another related problem 
involves the contradictory relationships between 
regulatory agencies at different levels (interna-
tional, regional, and local) in dealing with tra-
ditional knowledge.5 While it will be of prime 
importance to move toward a reconciliation be-
tween the CBD and the TRIPS agreement,6 any 
progress must take into account the full complex-
ity of issues related to biodiversity.7, 8 Such recon-
ciliation will not come easily. 

To productively engage indigenous knowl-
edge in efforts for economic development, 
policy-makers will need to reconsider the no-
tion of a dichotomy of indigenous and scientific 
knowledge and begin to challenge both types of 
knowledge. Doing so will mean developing both 
greater autonomy for participating in the pro-
duction of new knowledge and envisioning new 
approaches to regulating science. The Cartagena 
Biosafety Protocol, in particular, is today seen 
by many in the scientific community as having 
gone too far, imposing inordinately high levels 

of regulation, focusing excessively on transgenic 
plants (as opposed to other potential biosafety 
risks), and taking into account only the risk side 
of the equation of human welfare. Agricultural 
innovation has always been knowledge based, re-
lying foremost on farmers’ experience. With the 
development of modern science and its applica-
tions to agriculture, the situation has changed 
considerably. Without a doubt, agriculture owes 
many of its recent advances to the rapid growth 
of scientific knowledge, in both ecology and mo-
lecular biology. Yet, this advancement has been 
accompanied by a lack of awareness of tradi-
tional agricultural knowledge and even an active 
disregard for it.

To move toward a possible resolution, terms 
of the debate, it is of prime importance to rec-
oncile the terms of the CBD and the TRIPS 
Agreement. In critiquing what some would call a 
utopian attempt to strengthen the position of in-
digenous peoples relative to other populations, it 
is necessary to examine the basic question of how 
power structures knowledge. Otherwise attempts 
to address the interests of indigenous people will 
inevitably fail. This will also necessitate challeng-
ing and changing government policies, ques-
tioning science, and strengthening independent 
decision-making processes among indigenous 
peoples. Simply to document traditional knowl-
edge will not be enough. To bring indigenous 
knowledge to bear on agricultural and economic 
development, we must go beyond the dichotomy 
of indigenous versus scientific knowledge and 
work toward a better integration of the two. 

It is also essential to adapt the regulation and 
application of IP systems to include humanitar-
ian (that is, nonmarket) aspects of knowledge 
use in order to reconcile science-based agricul-
ture with the needs and practices of traditional 
agriculture. Industry leaders and academicians 
in the field of biotechnology have recognized 
this, voluntarily developing and introducing 
new approaches to IP management that begin to 
affirm the inextricably public aspects of knowl-
edge generation and to acknowledge that the 
extremely low cash flow of smallholders in the 
developing world will not generate significant 
royalties.9, 10
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It will be necessary to overcome the compart-
mentalized views held within the halls of Western 
science and begin to integrate traditional knowl-
edge into the scientific learning process. The Rio 
Convention is a remarkable framework document 
toward these ends. It succeeds in creating an open-
ing for this kind of shift by focusing, not merely on 
conservation, but also on the sustainable use of ge-
netic resources and the fair sharing of benefits that 
may arise from them. In particular, the provisions 
concerning access and benefit sharing (ABS) and 
the protection of traditional knowledge emerged 
as a viable way forward, creating room for the de-
velopment of innovative solutions. 

In addition, the dichotomy between Western 
science and traditional knowledge has caused a 
growing divide in the views held by the leaders 
of the international agricultural research com-
munity. The concept of biodiversity has too often 
in the public arena evolved into an unreflected 
mantra of environmentalists. While many today 
can agree that agriculture needs to become more 
sustainable—and that sustainability, in a broad 
sense, does have an important relationship with 
measures of biodiversity—what is needed is a 
precise analysis of the role of biodiversity within 
the actual context of all the complex elements of 
global agriculture, including the compelling need 
for ever-higher productivity.

This chapter concentrates on traditional 
knowledge—and how it relates to the ecology of 
agriculture in all of its variants—and compares 
it to recent advances in scientific knowledge 
and the resulting applications of biotechnol-
ogy in global agriculture. The notion of a deep 
contrast between agriculture that is based on 
traditional knowledge and agriculture based on 
scientific knowledge is challenged. While on the 
surface there are major cultural and philosophi-
cal differences in the conceptual underpinnings 
of traditional and scientific knowledge, there are 
also striking similarities. In order to overcome 
major misunderstandings and to create new 
and sometimes surprising understandings, this 
chapter advocates a discursive system of debate 
that takes into account different kinds of knowl-
edge and proceeds under a recognition of the  
“symmetry of ignorance.”11 

2. 	D efinition of 
traditional knowledge

Comparing indigenous cultures and Western cul-
ture, the contrasts in mode and structure seem 
obvious, leading to the assumption that the think-
ing of human beings from such diverse situations 
must somehow be intrinsically different. The 
religious rites and rituals of indigenous peoples 
can be perceived to be without parallel in con-
temporary postindustrial Western society. Worse 
yet, the tendency of some Western intellectuals 
is to romanticize indigenous cultures, celebrating 
the untapped richness—yet thereby making the 
perceived contrast even greater and obscuring or 
ignoring the commonalities in human thinking 
across all cultures.

According to Berkes, et al.,12 traditional 
knowledge is a way of knowing similar to that 
of Western science in that it is based on an ac-
cumulation of observations, but it is different 
from science in several other fundamental ways. 
The anthropologist Levi-Strauss13 argued that tra-
ditional knowledge and Western science are two 
parallel modes of acquiring knowledge about the 
universe, yet he observes that “the physical world is 
approached from opposite ends in the two cases: one 
is supremely concrete, the other supremely abstract.”

Similarly, the philosopher Feyerabend14 dis-
tinguished between two different traditions of 
human thought: abstract traditions (to which 
science belongs) and historical traditions (which 
include most systems of knowledge by people 
outside Western science), the latter being those 
through which knowledge becomes encoded in 
rituals and in the cultural practices of everyday 
life. 

Traditional knowledge may be holistic in 
outlook and adaptive by nature, gathered over 
generations by observers whose lives depended 
directly on the quality of information and its use. 
It often accumulates incrementally, its reliability 
is assessed through trial and error, and it is trans-
mitted to future generations orally or by shared 
practical experiences.15

Case studies reveal that there exists a diver-
sity of local, or traditional, practices for ecosys-
tem management.16 These include multiple-spe-
cies management, resource rotation, succession 
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management, landscape-patchiness management, 
and other ways of responding to and managing 
ecological pulses and surprises. Social mecha-
nisms behind these traditional practices include 
a number of adaptations for the generation, ac-
cumulation, and transmission of knowledge, 
the use of local institutions to provide leaders/
stewards and rules for social regulation, mecha-
nisms for cultural internalization of traditional 
practices, and the development of appropriate 
world views and cultural values. The use of the 
term traditional ecological knowledge has become 
established, among others, through the work of an 
international conservation union (IUCN) work-
ing group17, 18 and traditional ecological knowledge 
and wisdom (TEKW) has become established as a 
major term in all fields of ecology, including agri-
culture.19, 20, 21 (Figure 1)

3. 	 Resolving the contrasts between 
traditional and scientific 
knowledge

Agrawal22 and Agrawal23 both claim that by dis-
tinguishing indigenous knowledge from scientific 
knowledge, theorists are caught in a dilemma. 

Focus on indigenous knowledge has gained in-
digenous peoples an audible voice in develop-
ment circles. Yet, this distinction creates and 
perpetuates the dichotomy between indigenous 
and scientific ways of knowing. This dichotomy 
is especially problematic because it often hinders 
exchange and communication between the two. 
Further, both Agrawal and Agrawal argue that the 
basic distinction between indigenous and scien-
tific knowledge is artificial. 

This artificial barrier, I will contend, is one of 
the primary reasons why there appears to be such 
a distinct contrast between traditional organic or 
subsistence farming and technologically intensive 
agricultural methods, including biotechnology. 
Most scientists depict traditional knowledge as 
somehow unable to learn from experience, fuzzy 
in its concepts, and closed to conceptual inputs 
from the outside, whereas science is open to new 
thought, precise in its empirically tested prog-
ress, and responsive to the real needs of farmers. 
Critics of science, however, mistrust it for being 

too abstract, analytical, and divorced from the 
needs of real people. 

The reality in both cases is different from the 
perception. Closer consideration reveals that the 
differences are indeed much smaller. Traditional 
knowledge that has accumulated since ancient 
times and been transmitted by oral tradition has 
often turned out to be strikingly precise when 
tested against empirical observation. Indeed, 
given the test of time, traditional knowledge is 
verified or falsified by experiment and observa-
tion. And, in Western science, oral tradition is 
certainly present: scientific communities with dif-
ferent views and lexicons continue to exist region-
ally despite the homogenizing influences of the 
scientific literature and the Internet (for instance 
in botanical nomenclature). Feyerabend notes 
critically, that scientists are often closed to mat-
ters outside science.24 However, as Karl Popper25, 26 
rightly claims, a line must be drawn when a theory 
cannot be falsified: in such a case a theory should 
not be called scientific. Traditional knowledge is 
of course open to similar scrutiny.

Indeed, there are a number of authors who 
emphasize the commonalities between scientific 
and traditional knowledge without making the 
mistake of turning the terms into synonyms. 
Horton, 27, 28 for instance, cannot understand why 
some persons, familiar with theoretical thinking 
in their own Western tradition, have failed to 
recognize its African equivalents. He contends 
that they simply have been blinded by differences 
in idiom and that exhaustive exploration of fea-
tures common to Western and traditional African 
thought should come before any enumeration 
of differences. The same can be argued for the 
comparison between Western, science-based ag-
riculture and all kinds of traditional agricultural 
practices. 

The following sections seek to advance such 
a comparison between two apparently very dif-
ferent approaches to agriculture. In this case, the 
comparison is between organic agriculture and 
biotechnology-based agriculture, leaving out, for 
reasons of simplicity, the wider range of other 
agricultural approaches. Based on the lines of 
reasoning developed above, effort is made not 
to be distracted by the “idiomatic” contrasts or 
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distinctions drawn between the two, but to ex-
plore the commonalities. In fact, both strategies 
considered here comprise elements of traditional 
knowledge and empirical precision. Differences 
drawn between the two are based on emphasiz-
ing methodology, a view that will be tested and 
challenged.

4. 	Definition of present-day organic 
farming 

Organic farming (including some aspects of agro-
ecological approaches to farming as referred to 
by Altieri and Nicholls29) started as a heteroge-
neous set of alternative-management methods in 
agriculture. This explains the multiple origins of 
organic farming and the fact that certifications of 
organic-farming practices have been introduced 
separately in various times and places. Organic 
farming is now growing rapidly and becoming 
a viable industry in its own right. Harmonizing 
standards and regulations are being developed and 
imposed more or less strictly on organic farms, 
both by states, like California,30 and by national 
government agencies, like the U.S. Department 
of Agriculture. 

Today, the International Federation of 
Organic Agriculture Movements (IFOAM) is 
serving to unite the various organic movements 
of the world, with members in 108 countries 
and support from the UN Food and Agricultural 
Organization (FAO). IFOAM advances basic 
views on organic farming, such as the following 
four principles:31

1.	Principle of health. Organic Agriculture 
should sustain and enhance the health of soil, 
plant, animal, human and planet as one and 
indivisible.

2.	Principle of ecology. Organic Agriculture 
should be based on living ecological systems 
and cycles, work with them, emulate them, 
and help sustain them.

3.	Principle of fairness. Organic Agriculture 
should build on relationships that ensure fair-
ness with regard to the common environment 
and life opportunities.

4.	Principle of care. Organic Agriculture 
should be managed in a precautionary and 

responsible manner to protect the health and 
well-being of current and future generations 
and the environment.

Specific rules for organic agriculture are still 
the subject of international debate, given efforts 
to improve them, to find the right mix between 
regulatory strictness and diversity of applica-
tions. Some important documents in circulation 
intentionally go beyond the basic agreed-upon 
principles of organic farming 32,33,34,35 in order to 
stimulate discussion and to propose targets.

The main Swiss rules for organic agriculture 
are as follows:36 

•	 Natural cycles and processes are respected.
•	 The use of chemical-synthetic substances is 

avoided.
•	 The use of GMOs is not allowed, nor their 

derivatives, exception: products for veterinary 
medicine.

•	 The products shall not be treated with radia-
tion, and no products having undergone ir-
radiation shall be used. 

Since 2005 an official definition document 
on organic agriculture37 has been in a process of 
transparent deliberation and elaboration. The lat-
est language, which has not yet received definite 
approval, describes it as follows:

Organic agriculture, as defined by IFOAM, 
includes all agricultural systems that promote en-
vironmentally, socially and economically sound 
production of food and fibers. Recycling nutrients 
and strengthening natural processes helps to main-
tain soil fertility and ensure successful production. 
By respecting the natural capacity of plants, animals 
and the landscape, it aims to optimize quality in all 
aspects of agriculture and the environment. Organic 
Agriculture dramatically reduces external inputs by 
refraining from the use of synthetic fertilizers and 
pesticides, Genetically Modified Organisms and 
pharmaceuticals. Pests and diseases are controlled 
with naturally occurring means and substances ac-
cording to both traditional as well as modern scien-
tific knowledge, increasing both agricultural yields 
and disease resistance. Organic agriculture adheres 
to globally accepted principles, which are imple-
mented within local socio-economic, climatic and 
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cultural settings. As a logical consequence, IFOAM 
stresses and supports the development of self-support-
ing systems on local and regional levels.38 

It is notable that debate over the very definition 
of organic agriculture persists. The problem is that 
top-down regulation of organic agriculture means 
coming to terms with standards met also in tradi-
tional agriculture, such as defining levels of toxicity 
for biopesticides, which is often not easy.39

Altieri summarizes agroecology, following 
Reijntjes, Haverkort, and Waters-Bayer,40 with 
the following principles:41,42,43,44 

•	 Enhance recycling of biomass and optimizing 
nutrient availability and balancing nutrient 
flow 

•	 Securing favorable soil conditions for plant 
growth, particularly by managing organic 
matter and enhancing soil biotic activity

•	 Minimizing losses due to flows of solar radia-
tion, air and water by way of microclimate 
management, water harvesting and soil man-
agement through increased soil cover

•	 Species and genetic diversification of the agro-
ecosystem in time and space

•	 Enhance beneficial biological interactions and 
synergisms among agrobiodiversity compo-
nents, thus resulting in the promotion of key 
ecological processes and services

Details of modern breeding methods are still 
controversial in organic agriculture communities. 
While genetic engineering itself is widely reject-
ed, IFOAM agrees to the use of tissue culture and 
genetic assays, including genetic-marker-assisted 
breeding.45 Note that Altieri and colleagues do 
not explicitly exclude transgenic plants in princi-
ple, while they clearly do not agree with the prac-
tices of multinational corporations advancing this 
technology. Some organic rules do not take any 
position on mutagenesis (traits introduced by 
genetic changes resulting from exposure to ra-
diation or chemicals). This may not be unusual, 
since many successful crop traits have come from 
this method in the past. 

Another breeding-related controversy is that 
of new hybrid crops: whereas many organizations 
in organic agriculture accept hybrid maize, since 

this is a biological phenomenon that cannot be 
easily reversed or avoided, most are opposed to 
the introduction of more hybrids in other crops. 

In summary, organic farming has strong roots 
in traditional-agricultural knowledge. Today, it is 
drawing more and more on scientific research. 
Finding the right balance between these two 
sources of knowledge will continue to precipitate 
discussion within organic agriculture communi-
ties. Furthermore, the spectrum of different vari-
ants within organic and agroecological farming 
continues to expand and widen, ranging from 
integrated-pest-management techniques, used 
in conventional farming, to mainstream organic 
forming, to agroecological farming, and even to 
extreme forms of biodynamic farming.

In a number of developing countries, there 
are clear intentions to develop transgenic plants 
for use in subsistence farming, as indicated by sta-
tistics published by Cohen46 and the FAO.47

5. 	D efinition of Biotechnology-
Based Agriculture

5.1	 Transgenic crops and genomic integrity at 
the molecular level

Van Bueren, et al.,48 explore the nature of genetic 
engineering at the molecular level, in an effort to 
explain why organic farming cannot accept plant 
varieties manipulated by biotechnology. Following 
Verhoog, et al.,49 they posit “naturalness” as not 
only the avoidance of synthetic chemical inputs 
and the application of agroecological principles 
in cultivation, but also the maintenance of the 
“intrinsic integrity” of the organisms being cul-
tivated, including the integrity of their genomes. 
Their definition of the integrity of plant genomes 
is as follows: 

The general appreciation for working in conso-
nance with natural systems in organic farming ex-
tends itself to the regard with which members of the 
movement view individual species and organisms. 
Species, and the organisms belonging to them, are 
regarded as having an intrinsic integrity. This integ-
rity exists aside from the practical value of the species 
to humanity, and it can be enhanced or degraded 
by management and breeding measures. This kind 
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of integrity can only be assessed from a biocentric 
perspective … Organic agriculture assigns an ethical 
value to this integrity, and encourages propagation, 
breeding, and production systems that protect or en-
hance it. 

And further:
... biocentric perspective, organic agriculture 

acknowledges the intrinsic value and therefore the 
different levels of integrity of plants as described 
above. The consequence of acknowledging the in-
trinsic value of plants and respecting their integrity 
in organic agriculture implies that the breeder takes 
the integrity of plants into account in his choices of 
breeding and propagation techniques. It implies that 
one not merely evaluates the result and consequences 
of an intervention, but in the first place questions 
whether the intervention itself affects the integrity 
of plants. From the above described itself affects the 
integrity of plants.

Then, based on the nature of plants and their 
characteristics, a number of criteria, characteris-
tics, and principles for organic plant breeding and 
propagation are excluded for violating the integ-
rity of plants: for example, all breeding methods 
using chemicals or radiation—such as colchicine 
or gamma-radiation-induced mutants—all meth-
ods not allowing a full life cycle of the plant, and 
all methods manipulating the genome of the or-
ganisms. Unfortunately, the authors do not in-
quire very deeply into questions of the extent to 
which the structures and assembly of common 
crop species DNA has in fact been changed or 
manipulated by centuries of traditional selection 
and breeding.

For example, all varieties of wheat used to-
day—by organic as well as conventional farm-
ers—are a product of processes by which the 
genome has been subjected to numerous funda-
mental changes, and those changes have been suc-
cessfully integrated inside the organism known 
today as wheat. These modifications include the 
addition of chromosome fragments, the integra-
tion of entire foreign genomes, and radiation-in-
duced mutations (in the case of Triticum durum). 
Indeed, chromosome inversions and transloca-
tions are well documented in most major crops. 

Thus, the reality of all systems of agriculture 
is such that most of the principles of genomic 
integrity, as advocated by Van Bueren and col-
leagues,50,51,52 have long since been violated in 
almost all existing crops, and the naturalness or 
genomic integrity cannot be regained, unless the-
oretically one goes back to the ancestral genomes 
(which, in the case of each of the major crops, 
have not survived the intervening centuries of 
classical breeding). So, in reality, the principle of 
the “intrinsic integrity” of agricultural plant ge-
nomes is, at best, a fiction. 

Other advocates of preserving the intrinsic 
integrity of organisms advise against crossing the 
natural hybridization barriers between species. 
Yet, species barriers have been overcome by tradi-
tional-breeding methods for decades, as well as by 
methods of biotechnology. Here the most salient 
example is somatic hybridization, which involves 
the nonsexual fusion of two somatic cells. The ad-
vantage of this method is that, by the fusion of 
cells with different numbers of chromosomes (for 
instance, from different species of Solanum) fertile 
products of the crossing can be obtained imme-
diately. As a result, the polyploid plants that are 
obtained contain all of the chromosomes of both 
“parents,” instead of the usual half set of chro-
mosomes obtained through sexual reproduction. 
In order to achieve such somatic hybridization, 
required are cells, the walls of which have been 
digested away by enzymes, that are then enclosed 
only by their cell membranes (so called protoplast 
cells). With the loss of their cell walls, protoplasts 
also lose their typical shape and become spherical, 
like egg cells. The mixture of cells is then exposed 
to electric pulses to induce fusion. In order to get 
the “right“ fusion product (since the fusion of 
two cells from the same parent plant can also oc-
cur) distinct selectable markers are necessary from 
each of the original parent plants. Only cells that 
survive this double selection are genuine products 
of fusion. The easiest way of implementing two 
such selectable markers is by genetic engineer-
ing, such as incorporating antibiotic resistance 
genes into the original parent plants. Such pro-
cesses of protoplast fusion have been investigat-
ed and applied to potatoes, for instance. Under 
European Union (E.U.) regulations concerning 
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the deliberate release of GMOs into the environ-
ment, somatic hybrids are not considered GMOs 
and do not require authorization. In fact, the 
most recent draft of E.U. organic regulations, in 
which the introduction of GMOs in organic cul-
tivation is forbidden, follows the definition given 
earlier.53, 54 

The concept of the naturalness or intrinsic in-
tegrity of plant genomes is also challenged by ob-
servations of Arber (a 1978 Nobel laureate) of the 
insertion of genes across natural species barriers 
in the case of naturally transgenic grasses.55 Arber 
compared designed genetic alterations (including 
genetic engineering) with spontaneous genetic 
variations, those variations on which natural se-
lection then operates to drive evolution:56

Site-directed mutagenesis usually affects only 
a few nucleotides. Still another genetic variation 
sometimes produced by genetic engineering is the re-
shuffling of genomic sequences, e.g. if a given open 
reading frame is brought under a different signal for 
expression control or if a gene is knocked out. All 
such changes have little chance to change in funda-
mental ways, the properties of the organism. In ad-
dition, it should be remembered that the methods of 
molecular genetics themselves enable the researchers 
anytime to verify whether the effective genomic alter-
ations correspond to their intentions, and to explore 
the phenotypic changes due to the alterations. This 
forms part of the experimental procedures of any re-
search seriously carried out. 

Interestingly, naturally occurring molecular 
evolution, i.e. the spontaneous generation of genetic 
variants has been seen to follow exactly the same 
three strategies as those used in genetic engineering. 
These three strategies are: 

(a)	 small local changes in the nucleotide 
sequences,

(b) internal reshuffling of genomic DNA seg-
ments, and

(c) acquisition of usually rather small segments of 
DNA from another type of organism by hori-
zontal gene transfer. 

However, there is a principal difference between 
the procedures of genetic engineering and those serv-
ing in nature for biological evolution. While the ge-
netic engineer pre-reflects his alteration and verifies 
its results, nature places its genetic variations more 

randomly and largely independent of an identified 
goal. Under natural conditions, it is the pressure of 
natural selection which eventually determines, to-
gether with the available diversity of genetic vari-
ants, the direction taken by evolution. It is inter-
esting to note that natural selection also plays its 
decisive role in genetic engineering, since indeed not 
all pre-reflected sequence alterations withstand the 
power of natural selection. Many investigators have 
experienced the effect of this natural force which 
does not allow functional disharmony in a mutated 
organism.

Genetic modifications of plant genomes may 
in fact be common. Recently, another natural 
transgenic plant was discovered by Ghatnekar, 
Jaarola, and Bengtsson,57 involving the introgres-
sion of a functional nuclear gene from Poa to 
Festuca ovina. Yet other work reinforces the com-
parison, at the genomic level, between natural 
evolutionary processes and modern modifications 
of plant genetics through biotechnology.58,59,60 

Still, despite such similarities, there is one 
major difference: natural genetic variation and 
selection acts on a completely different timescale 
from transgenic agriculture. Naturally occurring 
mutants that survive in the wild can take from 
hundreds to millions of years to survive selection 
pressures and finally take over against their pre-
existing competitors. With transgenic crops the 
timescale is totally different. They run through 
a research, development, and regulatory process 
that lasts, on average, 15 to 20 years after which 
the successful ones are completely deregulated. 
These can then be propagated nationally and cov-
er millions of hectares within an extremely short 
time span on the evolutionary clock.

This basic insight of molecular biologists has 
been confirmed in analysis of modern breeding 
processes. The best example here is a comparison 
at the genomic level between transgenic and non-
transgenic wheat by Shewry et al.: 61

Whereas conventional plant breeding involves 
the selection of novel combinations of many thou-
sands of genes, transgenesis allows the production 
of lines which differ from the parental lines in the 
expression of only single or small numbers of genes. 
Consequently it should in principle be easier to 
predict the effects of transgenes than to unravel the 
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multiple differences which exist between new, con-
ventionally-produced cultivars and their parents. 
Nevertheless, there is considerable concern expressed 
by consumers and regulatory authorities that the 
insertion of transgenes may result in unpredictable 
effects on the expression of endogenous genes which 
could lead to the accumulation of allergens or toxins. 
This is because the sites of transgene insertion are not 
known and transgenic plants produced using biolis-
tics systems may contain multiple and rearranged 
transgene copies (up to 15 in wheat) inserted at sev-
eral loci which vary in location between lines.62,63 
Similarly, this apparently random insertion has led 
to the suggestion that the expression of transgenes may 
be less stable than that of endogenous genes between 
individual plants, between generations and between 
growth environments. Although there is evidence 
that the expression of transgenes introduced by bi-
olistic transformation is prone to silencing in a small 
proportion of wheat64,65… recent reviews66,67,68,69  ... 
demonstrate the utility of biolistics transformation as 
a basis for stable genetic manipulation.

Such studies confirming the stability of trans-
genic integrations70,71 have been extended to oth-
er methods of transformation, such as the direct 
insertion of DNA fragments,72 with some ques-
tions remaining about the long-term stability of 
agrobacterium-mediated transformations.73 But, 
some of the most interesting observations in this 
line of inquiry about genome integrity have been 
documented by Baudo, et al., 74 showing that the 
measured genomic disturbances from traditional 
breeding can be greater than the genomic distur-
bances from genetic transformation:

Detailed global gene expression profiles have 
been obtained for a series of transgenic and conven-
tionally bred wheat lines expressing additional genes 
encoding HMW (high molecular weight) subunits 
of glutenin, a group of endosperm-specific seed stor-
age proteins known to determine dough strength 
and therefore bread-making quality. Differences in 
endosperm and leaf transcriptome profiles between 
untransformed and derived transgenic lines were 
consistently extremely small, when analyzing plants 
containing either transgenes only, or also marker 
genes. Differences observed in gene expression in the 
endosperm between conventionally bred material 

were much larger in comparison to differences be-
tween transgenic and untransformed lines exhibit-
ing the same complements of gluten subunits. These 
results suggest that the presence of the transgenes did 
not significantly alter gene expression and that, at 
this level of investigation, transgenic plants could 
be considered substantially equivalent to untrans-
formed parental lines.

An ironic consequence of such results is that 
organic farming—by definition seeking to main-
tain the integrity of the plant genome by mini-
mizing artificial DNA disturbances—should 
in such cases favor the genetically engineered 
variety. A more general conclusion may be that 
transgenic crops should not have been subject 
to regulations based purely on the fact that they 
resulted from the methodology of genetic engi-
neering. Rather, it would have been more con-
sistent to have a close look in each case at the 
product itself. 

5.2	 The Green Revolution and agricultural 
biotechnology

The social impacts and implications of modern 
agricultural biotechnology have their origins in 
the Green Revolution, a term coined by William 
Gaud at a 1968 meeting of the U.S. Agency for 
International Development (USAID) referring to 
the extremely successful agricultural movement 
through which new crop varieties, improved ir-
rigation, adopted fertilizers and pesticides, and 
installed mechanization resulted in crop yields 
increasing dramatically, particularly in Asia. 

One of the key innovations that drove the 
Green Revolution was the genetic improvement 
of plant varieties, especially the introduction of 
dwarf and semi-dwarf traits, in which stem height 
was reduced but the size of panicles, and thus 
seed production was not reduced. However, the 
yield gains of the Green Revolution also depend-
ed upon the application of high doses of chemi-
cal fertilizers and copious irrigation. Abundant 
yields attracted a variety of pests, and, therefore, 
chemical pesticides needed to be applied in great-
er volume. In addition, new crop varieties were 
also selected for photo-insensitivity, so that they 
could be adapted for multiple cropping sequenc-
es, patterns, and latitudes. 
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Evenson and Gollin75 provide a thorough as-
sessment of the Green Revolution, showing how 
over the period 1960 to 2000 the international 
agricultural research centers, in collaboration with 
national agricultural-research programs, contribut-
ed to the development of modern varieties in many 
crops. These varieties contributed to large increases 
in crop production. Productivity gains, however, 
were uneven across crops and regions. Consumers 
generally benefited from the resulting decline in 
food prices, but farmers benefited only where cost 
reductions exceeded those price reductions.

Two names are intimately linked to the 
Green Revolution: Norman Borlaug (who was 
awarded the Nobel Peace Prize in 1970)76,77,78 and 
Monkombu Sambasivan Swaminathan (who was 
awarded the World Food Prize in 1987).79,80 Yet, 
very early on, Swaminathan warned of unwelcome 
developments related to the Green Revolution: 

The initiation of exploitive agriculture without 
a proper understanding of the various consequences 
of every one of the changes introduced into tradi-
tional agriculture, and without first building up 
a proper scientific and training base to sustain it, 
may only lead us, in the long run, into an era of 
agricultural disaster rather than one of agricultural 
prosperity. 81

As the successes of the Green Revolution 
were becoming manifest together with its detri-
mental effects—including the upsurge of insect 
pests, growing insect resistance against widely 
used pesticides, and negative effects on the soil 
fertility—Swaminathan felt obliged to call for an 
Evergreen Revolution, beginning as early as 1968, 
yet continuing all the way through 1990.82, 83 
Unfortunately, farmers’ access to free electricity 
to draw groundwater for irrigation, the negli-
gence of legumes in crop rotations, and the in-
discriminate application of chemical fertilizers 
and pesticides culminated in the degradation 
of soil and water. The damage to the ecological 
foundations essential for sustainable advances in 
productivity led to the onset of fatigue in agri-
cultural systems.

Lessons drawn from the Green Revolution 
are that steps taken toward productivity en-
hancement should concurrently address the 

conservation and improvement of soil, water, 
and biodiversity, as well as providing for the at-
mosphere and renewable energy sources. Keeping 
these goals in focus, the goals of the Evergreen 
Revolution for achieving higher productivity in 
perpetuity were developed. What this calls for is 
a system of agriculture that involves sustainable 
management of natural resources, while progres-
sively enhancing soil quality, biodiversity, and 
productivity. 

Only much later has biotechnology proven to 
be able to contribute to the goals of the Evergreen 
Revolution, since it helps to enhance some of 
the ecological factors.84,85,86,87 Biotechnology has 
proven to reduce pesticide use, positively influ-
ence nontarget insect populations, and induce 
no-tillage management practices that are benefi-
cial to soil fertility.88, 89 

An example of new biodiversity strategies 
fostered by a company known for the production 
of pesticides has been published by Dollaker and 
Rhodes.90, 91 They propose to integrate crop pro-
ductivity and biodiversity within pilot projects, 
jointly addressing the challenges of achieving 
crop productivity and biodiversity conservation 
objectives. Three pilot initiatives, developed by 
Bayer CropScience in Brazil, Guatemala, and 
the U.K. in collaboration with a variety of lo-
cal stakeholders, illustrate how conservation ob-
jectives can be embedded in land-management 
practices that enhance agricultural productiv-
ity and profitability, thereby addressing both 
food security and biodiversity-conservation 
challenges.

A new variant of industrial farming, develop-
ing in the United States, is called precision farm-
ing. It is a management system based primarily 
on a combination of information technologies, 
including networked computing, satellite moni-
toring, and automated guidance systems for farm 
machinery. Precision farming can save time and 
energy and, by reducing unnecessary applica-
tions of chemicals and irrigation, can lead to a 
more ecological farming with higher yields.92,93,94 
Methods of precision farming do not contradict 
the main principles of organic farming and, thus, 
could be seriously considered as helpful auxiliary 
methods.
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6.	 Sustainability and biodiversity
All agricultural systems must include the ability 
to provide an economic return to the farmer; un-
profitable agricultural systems will not survive un-
less they are subsidized. In the cases of the United 
States and Europe, such policies are problematic 
in the long run for many reasons. Today’s farming 
systems must provide opportunities to produce 
more food on smaller acreages.

Related to this imperative are issues concerned 
with maintaining and enhancing output, such as 
soil fertility and reducing losses to weeds and pests. 
It is less easy to argue that a natural or diverse eco-
system is a critical input to sustainable agriculture. 

While ecologists frequently stress the inter-
relationships between species, it is difficult to see 
how the existence of species such as the swallow-
tail butterfly or a rare orchid could contribute to 
a farming system’s sustainability.95 The degree of 
redundancy in ecological communities is largely 
unknown and remains a rich field of investigation 
for ecologists. Agricultural systems can benefit 
from a higher biodiversity (not necessarily within 
the production surface) by presenting in the near 
vicinity of the production fields, biological net-
works hosting highly diverse arthropod popula-
tions, making the whole region more resistant to 
rapid pest invasions.96, 97 This is not to say that 
agriculture could continue in the absence of all 
nonfarmed species. Rather, there is a suggestion 
that only a subset of all existing species is essential 
for food and fiber production.98, 99

6.1	 About sustainability in farming systems
Definitions of sustainability are manifold. Some, 
such as that of the FAO100 concentrate on ecologi-
cal factors alone, while others concentrate only on 
management factors. The question that concerns 
us is whether organic farming or biotech farming 
is more sustainable. The answer is not clear, since 
the comparison often does not involve the same 
basic elements. 

In one example that challenges the common 
view, Edward-Jones and Howells101 come to the 
conclusion that organic-farming systems are not 
sustainable in the strictest sense. Considerable 
amounts of energy are put into organic-farming 
systems. The majority of the compounds utilized 

in crop protection are derived from nonrenew-
able sources and incur significant processing and 
transport costs prior to application. Nevertheless, 
the long-term balance of inputs clearly favors 
organic-farming systems.102,103,104,105 Whereas 
nutrient (nitrogen, phosphorus, and potassium) 
inputs into the organic systems seem to be 34 to 
51 percent lower than with conventional systems, 
mean crop yield was only 20 percent lower over a 
period of 21 years, indicating on balance an effi-
cient production. In the organic systems, the en-
ergy to produce a dry matter unit of crop harvest 
was 20 to 56 percent lower than in conventional 
agriculture and correspondingly 36 to 53 percent 
lower per unit of land area. 

On the other hand, many of the “biopesti-
cides” used to control pests are not without toxi-
cological hazards to humans and the environment. 
As an example, there are a number of research 
groups working on the difficult question of how to 
avoid, or at least reduce, the input of copper sul-
phate as a biopesticide. It is clear from some stud-
ies, that copper deposited in high concentrations 
has a negative impact on soil microbes. Pedersen, 
et al.,106 found that total microarthropod abun-
dance was highest at intermediate copper con-
centrations and linearly related to grass biomass. 
For single-species populations, no clear picture 
of abundance in relation to soil copper was seen, 
but two collembolan species, Folsomia quadriocu-
lata and Folsomia fimetaria, were among the most 
sensitive. The resulting Shannon-Wiener index 
of biodiversity decreased linearly with increasing 
soil copper concentrations. Those results imply 
that a short-term strategy would be to avoid high 
concentrations of copper in the soil, but in the 
long run it will be better to avoid copper sulfate 
as a biopesticide altogether.

Sustainability can also be measured on a 
larger scale with methods developed in Europe to 
measure landscape quality.107 Results need to be 
verified, but show positive influence of organic 
farming in Norway. What we can learn from this 
is that sustainability on all kinds of farming strat-
egies depends on the local circumstances and may 
not submit to overall categorization. It certainly 
depends on the weight given to specific factors 
of sustainability. In the author’s view, population 
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size and feeding the growing number of people 
should have a very high priority on any such 
scale. Again, the claim is made that traditional 
knowledge can contribute in important ways to 
developing sustainable practices in agriculture 
and silviculture.108

6.2	 Biodiversity and farming systems
It is important to distinguish between overall 
biodiversity in a given farming-landscape sys-
tem, including the production area and biodi-
versity within the production system itself, the 
farm fields. The latter is often illusionary. Weeds 
within harvested fields are to be avoided, either 
by old-fashioned tilling or by various environ-
mentally acceptable herbicides. The reason is 
simple: for example, in wheat production systems 
some of the weeds cherished by conservationists 
such as Agrostemma ghitago are highly toxic be-
cause of their saponin and githagenin contents 
and can spoil the harvested grain even in low 
quantities.109

Many of the crops growing in farming sys-
tems around the world have ancestral parents that 
lived originally in natural monocultures.110 There 
are many examples of natural monocultures, 
such as the classic stands of kelp, Macrocystis pyr-
ifera, which was, in fact, analyzed by Darwin.111 
Ecologists now recognize that simple, monodomi-
nant vegetation exists throughout nature in a wide 
variety of circumstances. Indeed, Fedoroff and 
Cohen112 reporting on Janzen113, 114 use the term 
natural monocultures as analogous with the term 
crops. Monodominant stands may be extensive. In 
one example, Harlan recorded that for the blue 
grama grass (Bouteloua gracilis) “stands are often 
continuous and cover many thousands of square ki-
lometers” of the high plains of the central United 
States. It is of the utmost importance to agricul-
tural sustainability to determine how these exten-
sive, monodominant, natural grassland communi-
ties persist when we might expect their collapse. 

More examples are given of wild species 
in Wood and Lenne,115 including Picea abies, 
Spartina townsendii, Sorghum verticilliflorum, 
Phragmites communis, and Pteridium aquilinum. 
Early cultivars are also cited extensively,116 wild 
rice (Oryza coarctata), for instance, reported 

in Bengal as simple oligodiverse pioneer stands 
on temporarily flooded riverbanks.117 Similarly, 
Harlan 118 described and illustrated harvests from 
dense stands of wild rice in Africa (Oryza barthii, 
the progenitor of African cultivated rice, Oryza 
glaberrima). Oryza barthii was also harvested wild 
on a massive scale and served as a local staple 
across Africa, ranging from the southern Sudan 
to the Atlantic. Evans119 reported that the grain 
yields of such wild-rice stands in Africa and Asia 
could exceed 0.6 tons per hectare—an indica-
tion of the stand density in monocultures of wild 
rice. 

Botanists and plant collectors have, accord-
ing to Wood and Lenne,120 repeatedly and em-
phatically noted the existence of dense stands of 
wild relatives of wheat. For example, in the Near 
East, Harlan121 noted that “massive stands of wild 
wheats cover many square kilometers.” Hillmann122 
reported that wild einkorn (Triticum monococ-
cum subsp. boeoticum) in particular tends to form 
dense stands, and when harvested its yields per 
square meter often match those of cultivated 
wheats under traditional management. Harlan 
and Zohary123 noted that wild einkorn “occurs in 
massive stands as high as 2000 meters [elevation] 
in south-eastern Turkey and Iran.” Wild emmer 
(Triticum turgidum subsp. dicoccoides) “grows in 
massive stands in the northeast” of Israel, as an an-
nual component of the steppe-like herbaceous 
vegetation and in the deciduous oak park forest 
belt of the Near East.124 According to Wood and 
Lenne125 they are the strongest examples embrac-
ing wild progenitors of wheat. And Anderson126 
recorded wild wheat growing in Turkey and Syria 
in natural, rather pure stands with a density of 
300/m².

There are grounds for seriously rethinking 
the view of many agrobiologists that appear to 
uncritically accept that there was a loss of genetic 
diversity following the introduction of high-yield-
ing Green Revolution wheat and rice varieties in 
the 1960s and 1970s. The same is feared to fol-
low the rapid adoption of superior GM crops to-
day. There are several reasons for caution in these 
interpretations. 

There is evidence for genetic simplifications 
having occurred in ancient times. According to 
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the analysis of Fedoroff,127 thousands of years ago 
maize underwent a streamlining of its genome. 
Similar phenomena often occur in weeds like the 
chenopod Atriplex prostrata and are considered 
to have contributed to their exceptional migra-
tion ability since the last Glacial Maximum some 
18,000 years ago.128 

We can also paradoxically encounter an en-
hancement in genetic diversity in modern soy-
bean breeding. For example, Sneller129 looked at 
the genetic structure of the elite soybean popu-
lation in North America, using a coefficient of 
parentage (CP) analysis. Whereas common sense 
would tell us that soybean genetic diversity has 
diminished considerably in the wake of genetic 
engineering, there is hard data proving that the 
trend is not so simple, in fact, to the contrary, 
genetic diversity can also be enhanced through 
the introduction of herbicide-tolerant traits. The 
introduction of herbicide-tolerant cultivars with 
the Roundup Ready® trait was shown to have had 
little effect on soybean genetic diversity because 
of the widespread use of the trait in many local-
ized breeding programs. Only 1% of the variation 
in CP among lines was related to differences be-
tween conventional and herbicide-tolerant lines, 
while 19% of the variation among northern lines 
and 14% of the variation among southern lines 
was related to differences among the lines from 
different companies and breeding programs. 

In more-simple numbers of soybean traits: 
the new management conveniences associated 
with the herbicide-tolerant soybeans allowed 
for a more-liberal use of varieties, most of them 
transgenic.130 These include nearly 400 nema-
tode-resistant varieties of soybean from 48 seed 
companies and five universities. All but seven of 
the varieties listed contain nematode resistance 
derived from a certain breeding line PI 88788. 
Of the varieties listed, 286 are resistant to the her-
bicide Roundup®, six are tolerant to sulfonylurea 
herbicides, and the remainders are conventional, 
nonresistant varieties.

Similarly, when Bowman, May, and Creech131 
examined genetic uniformity among cotton vari-
eties in the United States, they found that genetic 
uniformity had not changed significantly with 
the introduction of transgenic cotton cultivars. 

In fact, when they compared the years before and 
after the introduction of transgenic cultivars, they 
observed that both the percentage of the crop 
planted with a small number of cultivars and the 
percentage planted with the most popular culti-
var had declined. Thus genetic uniformity actually 
decreased by 28% over the period of introduc-
tion of transgenic cultivars. In light of the data, 
the theoretical concepts of Gepts and Papa,132 
that GM crops are likely to be responsible for a 
biodiversity decline within crops is not very con-
vincing. It remains to be said that the continued 
use of locally adapted traits gained in traditional 
breeding should play an important role.133, 134

Several reviews135,136,137 contend that the neg-
ative impact of modern biotech agriculture on 
biodiversity has been overestimated, and perhaps 
even overstated, by the organic-farming commu-
nity for the purpose of marketing its alternatives 
on the grounds of their environmental character-
istics. We begin to see that, contrary to the pre-
ponderance of negative views, there are beneficial 
effects stemming from no-tillage, the reduction of 
pesticide amounts applied to fields, and enhanced 
biodiversity.

But there are also many studies that show 
that organic farming has definite advantages over 
conventional agriculture, particularly regarding 
biodiversity. One extensive review138 cites many 
field studies showing a wealth of evidence that 
now points to agricultural intensification as the 
principal cause of the widespread declines in 
European farmland bird populations,139,140,141 as 
well as of the reduction in abundance and diver-
sity of plant and invertebrate taxa over the past 
decades (well documented by Donald,142 Preston, 
et al.,143 and Wilson, et al,144 and others).

Only a few studies have sought to integrate 
the changes in soil conditions, biodiversity, and 
socio-economic welfare linked to the conversion 
from nonorganic to organic production (Cobb, 
et al.).145 Conclusions may not be representa-
tive for all organic conversions, but the findings 
are of relevance at a time of debate over chang-
ing patterns of subsidies and other incentives in 
agricultural policy. The study showed that there 
were demonstrable differences in overall environ-
mental conditions in the comparison of organic 
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and nonorganic farming, showing evidence of 
increased regional species diversity, and an even-
tual improvement in the profitability of the or-
ganic-farming regime. The study also showed that 
variations in farm-management practices strongly 
influence the notion of on-farm and off-farm en-
vironmental consequences. 

The same positive effects of organic farming 
are shown in a 21-year study in Switzerland (the 
so called DOK study).146 Part of the data has been 
published in Science.147 The organic farming ben-
efits related to biodiversity are well documented, 
especially with soil microbial diversity: root length 
colonized by mycorrhizae in organic-farming sys-
tems was 40 percent higher than in conventional 
systems.148 Biomass and abundance of earthworms 
were higher by a factor of 1.3 to 3.2 in the organ-
ic plots as compared with conventional.149 At the 
same time yield is, compared to traditional farm-
ing, dropping 20 percent. This fact triggered a 
debate in Science concerning whether such a drop 
in yield is tolerable with regard to the protection 
of biodiversity, since today we should realize the 
imperative to produce more food on a shrinking 
amount of arable land.150,151,152 Potato yields in the 
organic systems were 58 to 66 percent of those 
in the conventional plots, mainly due to low po-
tassium supply and the incidence of Phytophtora 
infestans. Winter wheat yields in the third crop-
rotation period reached an average of 4.1 metric 
tons per hectare in the organic systems. This cor-
responds to 90 percent of the grain harvest of the 
conventional systems. In an overall comparison, 
provided the lower energy input is also taken into 
account, one can conclude that, theoretically, in 
some favorable conditions organic farming can be 
the more-efficient production strategy. A rather 
negative point is the safety of organic food: infec-
tions with the infamous Echerichia coli O157-H7, 
with its sometimes deadly consequences, seem 
to be a problem with respect to organic food. A 
number of papers demonstrate the legitimacy of 
these concerns.153,154,155,156,157,158,159

Only a very few studies exist (such as Roush)160 
that concentrate on a circumscribed agricultural 
practice comparing organic and biotech farming. 
This early paper compares directly Bt sprays used 
in organic farming and Bt transgenic crops, and 

the case is clear: Bt transgenic crops have advan-
tages. Also, it has to be said that detailed studies 
of the impact of organic farming on various envi-
ronmental factors are still scarce.

7. 	 Consequences and conclusions
Following the lines of reasoning presented here 
to their logical ends would, foremost, advocate 
a refrain from fostering the notion of a divide 
between agriculture using transgenic crops and 
organic-management systems. It is difficult to 
consistently maintain any divide along the lines 
of breeding technologies or the use of agrochemi-
cals. The current perception of large differences 
in practices are mostly the result of differences in 
world view, often built, as has been argued here, 
on unfounded theories and even quasi-religious 
beliefs. 

A successful integration of present-day 
management systems needs a new communica-
tion strategy. Such a strategy should embrace a 
dialogue with the public utilizing the “Three E 
Strategy” (entertainment, emotion, and educa-
tion), which, according to Osseweijer161,162 could 
initiate a decision-making process along the lines 
of the “Systems Approach,” a discursive decision-
making process for socially contentious issues.163 

But a dialogue, in itself, will not create agri-
cultural-management systems that build on local 
conditions, help poverty alleviation, respect ele-
ments of traditional knowledge, and combine it 
in a successful relationship with science. Building 
those bridges, in reality, need more than public 
acceptance. And more than decision-making pro-
cesses, the effort will require making real deci-
sions and following through on them. 

Such an effort also needs the initiation of a 
mechanism like the participatory projects proposed 
by Slingerland et al.,164 a working team from 
Wageningen that started a participatory farm-
ing project in Ouagadougou in West Africa with 
sorghum. Addressing iron deficiency caused by 
malnutrition in West Africa, this became an in-
terdisciplinary program targeting the food-chain. 
In Africa current interventions are dietary diversi-
fication, supplementation, fortification, and bio-
fortification. But such interventions alone have 
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only moderate chances of success due to low pur-
chasing power of households, lack of elementary 
logistics, lack of central processing of food, and the 
high heterogeneity in production and consump-
tion conditions. Slingerland165 proposed, based 
on excellent theoretical views, a staple food-chain 
approach, integrating parts of current interven-
tions as an alternative. The research was carried 
out in several villages in Benin and Burkina Faso 
to take ecological, cultural, and socio-economic 
diversity into account. The interdisciplinary ap-
proach aimed at elaborating interventions in 
soil-fertility management, improvement, and 
choice of sorghum and other crop varieties and 
food processing, to increase iron and decrease the 
phytic acid-iron molar ratio in sorghum-based 
foods. The phytic acid-iron molar ratio was used 
as a proxy for iron-bioavailability in food. Synergy 
and trade-offs resulting from the integrated ap-
proach showed their added value. Phosphorous 
fertilization and soil organic amendments applied 
to increase yield were found to also increase the 
phytic-acid content of the grain and thus decrease 
its nutritional value, countered by new food pro-
cessing reducing the phytic-acid levels again.

Ultimately, only a participatory approach 
building on the “unifying power of sustainable 
development” will lead to balanced choices be-
tween “People, Planet, and Profit” in agricultural 
production chains and rural land use, in build-
ing the bridge between traditional knowledge 
and science. The Golden Rice project166 and 
the SuperSorghum project167 both need to take 
account of these ideas in order to make those 
projects real successes. They include transgenic 
plants and, thus, need special efforts in partici-
patory management in order to bring them to 
fruition. 

Synergies will be of considerable importance, 
as soon as we begin to refrain from unproductive 
controversies over breeding and management 
methodologies. In the face of the urgent situa-
tion in many countries in the developing world, 
there is no time for contention and the overload 
of regulations. These prevent or at least slow the 
introduction of socially beneficial nutritional in-
novations, in the very countries where they are 
needed most. n 
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