INTO THE TWENTY FIRST CENTURY WITH A TWENTIETH CENTURY
SCHEME FOR INTELLECTUAL PROPERTY PROTECTION FOR COMPUTER

LIGHT OF RECENT CASES GRANTING BROAD COPYRIGHT DPROTECTION
FOR USER INTERFACE ASPECTS OF PROGRAMS AND THE PATENT
QFFICE’'S CONSISTENT DIFFICULTIES EVALUATING SOFTWARE

APPLICATIONS

Daniel S. Kirshner
Candidate for Master of Intellectual Property
Franklin Pierce Law Center
May 3, 19%4

INTRODUCTION

Recent events in the law of intellectual property
protection for computer software dictate that the time has
come for Congress to seriously consider a new sui generis
type of protection. In the world of copyright protection
for computer software, the courts have consistently had
difficulty defining the scope of protection for non-literal
elements, and the recent decision in Lotus Development
Corporation v. Paperback Scftware granting broad copyright
protection to user interface portions of software
illustrates this point. 1 In the world of software patents,
the United States Patent Office has consistently had
difficulty evaluating patent applications relating to
software inventions, and two events within the past several
months - a broad patent issued to Coﬁptons New Media and a
federal jury verdict finding infringement of a broad patent
issued to Stac Electronics - illustrate this point.

These cases illustrate some of the problems
surrounding the present scheme of intellectual property
protection for computer software. This paper advocates a
sui generis form of intellectual property protection for
software - a whole new body of federal law regulated by an
agency of the federal government, either acting
independently or as a branch of the Patent Office. This
paper will examine the problems with the scheme for
intellectual property protection for software as it exists

now, will examine various alternatives, and will conclude

that the best alternative is a sui generis form of
legislation. This paper will then set forth some specific
recommendations regarding the parameters of the sui generis
intellectual property protection and the legal requirements

for protection under the new legislation.

BACKGROUND

The U.S. Constitution grants Congress the power to
enact legislation to promote the progress of science and
the useful arts, by securing for limited times to authors
and inventors the exclusive right to their respective
writings and discoveries. 2 Under this power, Congress has
enacted patent legislation to grant inventors exclusive
rights to their inventions when they meet the statutory
requirements, and has enacted copyright legislation to give
authors exclusive rights to their original works of
authorship.

Although this Constituticnal clause was enacted
without debate and there is little history as to the intent
of the framers, that intent is quite clear. The purpose of
patent and copyright legislation is to foster innovation
and creativity through granting authors and inventors a
limited monopoly for finite time periods. If this is the
intent of the framers, and if the legislation is to have
economic justification, the scope of protection for authors
and inventors must strike a balance. One the one hand, the

limited monopoly must be of wide enough scope and duration

to give inventors and authors the incentive to commit time
and resources to creation. On the other hand, the scope and
duration cannot be so overly wide as to hinder the
dissemination of the works to society. In the realm of
patents, an inventor is granted the exclusive right to
make, use or sell her invention for a period of seventeen
years from the date of the grant of the patent. In return,
the inventor must disclose her invention with enocugh
specificity to allow one skilled in the art to practice the
invention upon the expiration of the patent. Similarly,
under copyright law, an author receives exclusive rights to
her original works of authorship for at least fifty years.
In return, those works of authorship are dedicated to the
public domain upon expiration of the copyright term. As
compared to a patent, the much longer term of a copyright
is justified by giving the author exclusive rights only to
the expression of her ideas, but not the actual ideas.
Computer software is unique because it is cross
between a piece of literature and a machine, it is part
prose and part invention, it can be aesthetically pleasing
yet functional. It is also a multi-billion dollar industry
in the United States, and a major United States export.
Most people would agree that some degree of
intellectual property protection for computer software is
essential to insure that software developers will have a
reasonable opportunity to realize a return on their

investment in developing software. The proper scope of the

protection is more controversial. Software is different
from other inventions because of the ease which it can be
copied, and almost everyone would agree that there should
be protection against direct literal copying of the code of
a program, i.e. pirating. Without protection for literal
copying, software developers will not have a reasonable
opportunity to realize a return because the cost of copying
is very inexpensive in comparison to the cost of
development .

More and more in recent years, a large portion of the
value of a computer program resides in the non-literal
aspects of the program, and not its literal components. For
example, someone could copy the look and feel of a popular
program, 1.e. perform the same function, interact with the
user in the same way, and respond to the same user
commands, and yet write the program from entirely different
source code. Most people would agree that the intellectual
property laws shéuld prohibit such lock and feel copying,
and indeed the courts have generally protected against this
type of copying.

On the other hénd, intellectual property protection
for software must not be overly broad. The protection
granted must not hinder competitors from access to
programming technigues that are essential to compete for a
disproportional length of time. In addition, the term of
protection must no be so long that society is prevented

from receiving its side of the bargain (the dissemination

of the work without restraint) until after the work has
little or no value. Becauserthe state of the art in
computer programming is advancing so guickly and works
become cbsolete within a few years, this consideration

requires special attention.

THE PRESENT SCHEME OF INTELLECTUAL PROPERTY PROTECTION

In order to understand the problems associated with
the current scheme of protection for software, it is
necessary to understand the parameters of the current
gcheme whereby software developers utilize a overlapping
mosaic of copyright, patent, contract and trade secret law

to protect their investments.

Copyrights
Over the past twenty years, copyrights have played the

most important role in intellectual property protection for
software. In 1974, Congress created a special commission to
study the issue of intellectual property protection for
computer programs. 3 The National Commigsion on New
Technological Uses of Copyrighted Works (CONTU) recommended
that copyright protection should be extended to computer
programs, and that protection should extend beyond the
literal source code of the program. 4 The scope of the
protection for non-literal aspects would be determined

judicially through emerging case law. °

Copyright protection for the source and object code of

e

a computer program - the literal aspects of the program -
is not controversial. Most commentators would agree that
the copyright laws should prevent piracy of the actual code
of a program and the courts have appropriately found
infringement in this type of case.

There is greater controversy surrounding the
protection of non-literal aspects of computer programs and
the extent of copyright protection for non-literal aspects
of computer programs varies has depended upon the court
ﬁaking the determination.

Important cases starting with the Third Circuit’s
landmark decision in Whelan Asgsociates, Inc. v. Jaslow
Dental Lahoratory, Inc. ® have reached sometimes
inconsistent results attempting to define the proper scope
of protection for non-literal aspects of programs. In
Whelan, the defendant’s program for managing dental lab
business functions used some of the same data and file
gstructures as the plaintiff’s program. The defendant
claimed that there was no infringement because the
copyright laws protected only the actual code of the
program, not the non-literal data and file structures. The
Third Circuit disagreed and stated that copyright
protection was available for the structure, sequence and
organization of the program, not just the literal
components. ’

Since Whelan, other Circuits have reached inconsistent

results when considering cases of alleged copying of non-

literal aspects of programs. Recently, the Second Circuit
has addressed this issue in Computer Associates v. Altai,
and expressly rejected the broad holding of the Third
Circuit in Whelan. 8 The court in Computer Associates
adopted a narrower test for assessing substantial
gimilarity in cases of alleged infringement of non-literal
aspects of computer programg. As stated by the Second
Circuit, a court must apply an "abstraction - filtration -
comparison" test to judge substantial similarity. 2 In the
first stage, the abstraction stage, the court would break
the allegedly infringed program down into its constituent
structural parts. 10 Next, the court must filter out from
the constituent structural parts those non-protectable
parts that are merely incorporated ideas, expression that
is necessarily incidental to those ideas, and elements that
are taken from the public domain. 11 What remains is a
kernel of protectable creative expression which is compared

to the structure of the alleged infringing program. 12

Copyright Protection for User Interface Aspects of Programs

As defined broadly, a user interface is what a user
must learn in order to operate the computer - it is the
language one uses to communicate with the machine. User
interfaces include computer languages, the languages one
types into a keyboard that are converted into machine
readable source code. Common examples are Fortran, Basic,

Pascal, C and others. Graphic user interfaces (GUI’'s),

FRANKLIN'PIERCY

W CENT
e coNCORD N. H.

another type of user interface, are icons or menus that are
utilized to select items or to otherwise communicate with a
computer. Examples of this include the Windows operating
system by Microsoft and the Macintosh interface by Apple.
The state of the law regarding user interfaces is
uncertain and several courts have reached the undesirable
result of granting broad copyright protection to user
interfaces. In Lotus Development Corporation v. Paperback
Software International, 13 the plaintiff Lotus alleged that
the defendant infringed the copyright on the user interface
portions of Lotus’s popular 1-2-3 spreadsheet when the |
defendant marketed a spreadsheet with an identical user
interface portion. The District Court for the District of
Massachusetts held that there was a copyright infringement
and set forth a three part test for infringement of user
interfaces. 14 First, the court must choose from the
alternatives along the scale from the most generalized
conception to the most particularized, and choose some
formulation - some conception or definition of the idea -
for the purpose of distinguishing between the idea and its
expression. 15 gecond, the court must focus upon whether an
alleged expression of the idea is limited to elements
eggential to expression or instead includes identifiable
elements of expression not essential to every expression of
that idea. 16 Third, the having identified elements of
expression not essential to every expression of the idea,

the court must focus on whether those elements are a

substantial part of the allegedly copyrightable work. 17
Applying this test, the court found that the idea of the
Lotus 1-2-3 program was to create a spreadsheet to
manipulate columns of numbers, and the user interface was a

part of the expression of the idea, and found infringement.

18

In a later case, Lotus sued Borland International,

Inc. for infringement of the copyright on its user
interface when Borland allegedly included a macro
translation feature in Borland’s product. 19 By this time,
Lotus’s spreadsheet product has become a standard in the
industry, and the user commands have become very familiar
to its users. Borland, a much smaller company attempting to
gain market share in the spreadsheet industry, introduced
its product which incorporated similarities to Lotus’s
keystroke sequence and the ability to customize the
interface to emulate Lotus’s spreadsheet. Applying the test
previously set forth, The United States District Court for
the District of Massachusetts, per Judge Keeton, held that
copyright protection extended to the program’s menu
structure and organization, and copying by the defendant of
the first letters of command names constituted
infringement. 20

In a recent cage concerning user interfaces, Apple
Corporation sued Microsoft Corporation alleging that
Microsoft’s introduction of its Windows graphic user

interface infringed Apple’s copyright on its Macintosh

e

interface system. 21 This case was tried in the United
States District Court for the Northern District of
California and the result here seems to be inconsistent
with the result reached by the Massachusetts Court in
Lotus. The court here held that there was no infringement
because there was no virtual identity between the two
works. 22 However, the court appears to accept the
proposition that the user interface is a copyrightable
agspect of a program and left open the possibility of

infringement of a user interface.

Patent Protection for Software

Until the 1980’s, patent protection for computer
software inventions was not available. The Patent Office
had a policy of rejecting patent applications which were
directed toward software inventions on the theory that
programs were merely algorithms and thus non-protectable
mathematical formulas.

A new era of software patents began in 1981 with the
Supreme Court holding in Diamond v. Diehr. 23 This case
involved a process for curing rubber which included one
element comprising a computer program. The Court held that
process was statutory subject matter for patent protection
notwithgstanding the presence of the computer program
element. 24 Only computer programs which were mathematical
algorithms in the abstract were thereafter considered non-

statutory subject matter.

It now appears that even inventions that comprise
purely computer programs (i.e. algorithms) are patentable
if they meet the other requirement of the patent statute.
One example is Arrhythmia Research Technology, Inc. v.
Corazonix Corporation where the'Court of Appeals for the
Federal Circuit (the court that now hears all patent
appeals) held that a patent directed to computer analysis
of electrocardiographic signals of heart functions was
statutory subject matter for a patent. 25

Over the past few years, hundreds 1f not thousands of
patents have been issued with claims directed to subject
matter comprising computer programs. There has been a great
deal of criticism of the Patent Office for issuing patents
where prior art should have prevented the issuance of these
patents - the most recent examples are the Stac patent and

the Comptons patent described later in this paper.

CONGRESS SHOULD NOW CONSIDER A SUI GENERIS TYPE OF

INTELLECTUAL, PROPERTY PROTECTION FOR SOFTWARE

Broad Protection for User Interfaces is not Desirable

The arguments against providing broad intellectual
property protection for user interfaces, perhaps stated
most eloguently by Richard Stallman and the League for
Programming Freedom, are very convincing. 26 The most
compelling argument is that diversity in user interfaces is
not desirable. Users of computer scoftware do not value

diversity because of the time that they must invest in

learning a new interface. Therefore, instead of stimulating
competition, protection for interfaces discourages it. If
an interface is protected by a copyright, a competitor will
be forced to develop an entirely different interface in
order to introduce a new software product. This will
require a user to retrain using the new interface and since
retraining requires an investment of time, new users will
be uniikely to purchase the competitors product. Users may
choose to continue to use a program containing an interface
that they are familiar with rather than investing the time
to learn a new and perhaps superior product if it contains
an unfamiliar user interface.

Software developers do not need the additional
incentive to develop user interfaces that is provided by
copyright protection for user interfaces. As the League for
Programming Freedom points out, the plaintiffs in recent
interface copyright law suits (Lotus and Apple) developed
their interfaces before copyright protection was provided
for user interfaces. Even though competitors were free to
copy the interfaces, these companies were very successful
and received large returns on their investments.

The test set forth by the Lotus court for infringement
of non-literal user interface portions of a program has
been criticized on the ground that it takes too narrow a
view of what is the idea of a program. 27 The Lotus case
ifself provides a perfect example. If the idea of the Lotus

1-2-3 program is to provide the user with a spreadsheet to

programs is less appropriate. Today, much of the novelty in
programming is embodied in the structure and sequence of
new programs, and new programs with novel structure and
sequence often borrow code from existing programs. With the
evolution of new programming technigues, the comparison of
computer programs to works of literary merit has become

less appropriate.

Copyright Protection for Software Threatens to Undermine

the Tenet that Utilitarian Aspects of Works Are Not

Protectable

Since the Supreme Court holding in Baker v. Selden 28
more than one hundred years ago, it has been a basic
premise of the copyright laws that expression not ideas are
protectable under copyright law, and utilitarian aspects of
works are excluded from protection. Copyright protection
for software may tend to dilute this basic premise because
software is by its nature a utilitarian work. The exception
to the exclusion of utilitarian aspects of works from

copyright protection may set a regrettable precedent.

Inconsistent Judicial Outcomes Lead to Uncertain Results
This paper has already addressed the inconsistent
results that Federal Circuits have reached when required to

apply.the copyright statute to computer programs. These
inconsistent results have led to uncertainty with regard to

the scope of protection offered to computer programs,

particularly in the area of protection for non-literal
aspects of computer programs. The outcome of a law suit
alleging infringement of non-literal structure, sequence
and organization aspects of a program may differ depending
on the circuit that hears the suit. The Third Circuit
applying the Whelan v. Jaslow structure, sequence and
organization standard may find infringement where the
Second Circuit applying the abstraction, filtration and
comparison test may find no infringement. Inconsistent
regsults between the circuits is undesirable because this

may lead to forum shopping by plaintiffs.

and Non-Obviocusness in Software Applications

The Patent Office has consistently had difficulty
determining novelty and non-obvicusness in software
inventions, and some have criticiﬁed the Patent QOffice for
issuing absurd patents. There have been cases of patents
issued on software inventions where the prior art was not
discovered because it was too obvious to publish a paper
describing it. The League for Programming Freedom cites the
example of a patent issued to AT&T claiming the use of
backing store in a window system that lets multiple
programs have windows. 22 This same technique had
previously been developed at MIT and considered too cobvious
to publish (so claims the writer for the League for

Programming Freedom - himself affiliated with MIT.)

Two recent events further illustrate the problems that
the Patent Office has had in examining software inventions.
In August of 1993, the Patent Office issued a patent to
Comptons New Media that contains claims directed to a
search method using a multimedia database consisting of
text, picture, audio and animated data. 30 This patent
appeared to give Comptons the right to exclude others from
using some of the most popular basic searching techniques.
When Comptons announced that this patent had been issued,
and that it intended to enforce its patent rights, the
software industry reacted with outrage. Many people
criticized the Patent Office for issuing the patent on the
grounds that the techniques were well known in the industry
and the invention did not meet the statutory requirements
for novelty and non-obviousness. In December of 19293, Bruce
Lehman, the Patent Commissioner, took the unusual step of
announcing that the Patent Office would reexamine Comptons
patent on the basis of newly discovered prior art, and on
March 28, 1994 the Patent Office announced the rejection of
all claims in the Comptons patent. 31 Under the Patent
Office’s reexamination procedure, Comptons now has two
months to respond to the rejection of the claims. 32

On February 23, 1994, a federal court jury in San
Francisco assessed a record $120 million judgment against
software giant Microsoft for infringing a patent owned by a
small California company named Stac Electronics. 33 This

patent for a data compression apparatus and method contains

claims for converting an input data character stream into a
variable length encoded data stream in a data compression
system. Software industry experts have gquestioned the
validity of the claims of this patent on novelty grounds as
well. Because of the size of the jury verdict, the
potential impact on the software industry and the power of
Microsoft, this verdict is likely to be appealed.

This problem with patents for software inventions -
the inability of the Patent Office to recognize that an
applicant’s program is anticipated by Prior art and
therefore granting an absurd patent - is a problem that is
might be addressed without making sweeping changes, and in
fact the Patent Office has recently taken action to hire
more qualified computer scientists. In January of 1994, the
Patent Office held hearings in San Jose to discuss the
issue of patent protection for software. At these hearings,
Bruce Lehman announced the formation of an Electronic
Information Center in Group 2300 to improve the collection
of scoftware in the Patent Office and to improve access to
prior art programs.

In addition, the patent laws already provide a remedy
for patents that issued despite prior art which was not
discovered. Section 302 of the patent statute allow any
person to request the reexamination of an issued patent on
the basis of a patent or printed publications. 34

Nevertheless, because statutory intervention is

necessary in light of undesirably broad copyright

protection for user interfaces, it is recommended that
intellectual property protection for software be provided

with a single unified sui generis format.

SPECIFIC PROPOSAT, FOR SUI GENERIS LEGISLATION 35
This paper advocates new Congressional legislation for
sul generis intellectual property protection for computer
software. Derived partially from the best aspects of the
existing format under copyright and patent law, and
partially brand new law, the sui generig legislation would

attempt to address the problems with the existing scheme.

A New Federal Agency

This proposal for sui generis intellectual property
protection advocates the creation of a new federal agency
for the administration of the new legislation. For the
purposes of this paper, I shall hereinafter refer to this
new agency as the ‘Software Office’. The Software Office
could be totally independent, or altermatively could be a
separate entity of the patent and trademark office. Like
other federal agencies, the Scoftware Office would be
empowered to issue regulations as permitted by the
Congressional enabling statute, subject to judicial review.

The Software Office would be required to hire
qualified computer experts in the various fields of
computer science (analogous to examining units in the

patent office) as the advancing state of computer science

requires. These examiners would carry out prior art
searches and to identify novel and non-obvious aspects of
applicants’ software inventions. In addition, the examiners
would be trained in the sui generis software law.

The Software Office would assemble a data base of the
existing art all field of computer science. As the state of
the art advances, the Software Office would update the data
base in order to keep current. The public could be allowed
access to this computerized data base in order to permit a
member of the public to determine the state of the art. In
this manner, a member of the public could make a
preliminary determination as to the novelty of his
invention. In addition, a member of the public might be
allowed to download programs that are in the public domain,
perhaps according to a fee schedule with the funds
allocated between the software developer and the Scftware
Office. This would contribute to the advancement of the
state of software technology because it would eliminate the

need to duplicate effort which has already been expended.

Novelty Determination

Similar to the requirement of novelty and
nonobviousness under the present patent system, a applicant
for registration of a software program would submit her
program to the Software Office for determination of novelty
and non-obviousness. Upon application to the Software

Office, the application would be assigned to an examiner in

an examining unit skilled in that particular art. A program
which performs the same function, in the same manner, and
in the same way as an existing program would be refused
registration for lack of novelty. The program would be
refused registration even if the program was written using
entirely different code. In addition, similar to the patent
regime, a program would not receive intellectual property
protection if the program is an obvious variation of the
prior art, i.e. if the differences between the applicant’s
program and the prior art would be obvious to one skilled

in the art.

Term of Protection

The term of intellectual property protectioﬁ for novel
and nonobvious software should reflect the social bargain
which provides the justification for providing protection.
The term must be long enough to provide the programmer with
an incentive to write a new program and give the programmer
a reasonable opportunity to regain a return on his
investment. On the other hand, the term of protection must
not be so long as to deny the public access to the program
until after the software has become obgolete. Under the
current scheme, software protected under patent law is
protected for a period of seventeen years from the date
that the patent issued. Software protected under copyright
law is granted a term of at least fifty years, and in the

more usual case of works made for hire - seventy five

years. Because of rapid state of advance of technology in
the computer software industry, these terms are far too
long since the software becomes obsolete before the
expiration of the term of protection.

This paper advocates a much shorter term of protection
than is currently provided. A term no longer than five
years should give a programmer a reasonable opportunity to
receive a return on his investment thereby providing the
requisite incentive to create. A truly novel program should
retain value after five years and when dedicated to the
public domain, the public receives the benefit of its side

of the social bargain.

User Interface Aspects of Programs Not Protected Broadly

Under the sui generis legislation for protection of
computer software, user interface aspects of computer
programs would not be given broad protection.

The first stage in the statutéry scheme would be to
define the parameters of user interfaces. This would be a
matter of negotiation and compromise first in Congressional
committee and then in the full House and Senate. As a
guideline, this paper recommends the broad definition
already delineated - the commands a user must learn in
order to communicate with the computer.

The next stage would be to specifically define the
scope of protection granted to user interfaces. The scope

of protection would alsc be a matter of Congressional

negotiation and compromise. This paper advocates the
complete exclusion of user interfaces from protection.
Another alternative would be to grant liﬁited protection to
user interfaces, but allow other programmers access to
interfaces without fear of infringeﬁent upon payment of
compulsory licensing fees.

Short of excluding interfaces entirely, or legislating
a compulsory licensing arrangement, this sui generis plan
for software protection reduces the stifling effect of user
interface exclusivity by shortening the term of protection.
If an interface becomes an industry standard, and a large
number of users are trained to use that particular
interface, after the relatively short term of protection

the interface becomesg part of the public domain.

CONCLUSION

Because of undesirable holdings in several courts that
grant broad copyright protection to user interface aspects
of computer programs, advancements in programming
techniques which render copyright protection for software
unsuitable, and the inability of the Patent Office to deal
with inventions comprising computer software, it is time
for Congress to seriously consider a new sui generis type
of intellectual property protection for computer software.
This paper advocates the formation of a new federal agency
which would oversee the new form of protection. The agency

would compile a data base of prior art computer programs,

examine applications for novelty and non-obviousness, and
grant protection to those programs that meet the statutory
requirements. The term of protection would be short in
comparison to the terms issued under the existing copyright
and patent formats. User interface aspects of computer
programs would be granted either very narrow protection or
no protection whatsocever.

Through this new sul generis legislation, a bargain is
struck whereby software developers will have the incentive
to commit time and resources to advance the state of
technology while society obtains access to the software
before it becomes obsolete. Through sui generis
legislation, the United States can retain its dominant

position in software development.

Footnotes

1. Lotus Development Corporation v. Paperback Software
International, 740 F.Supp. 37, (D. Mass. 1990)

2. U.S. Constitution, Art. 1, Section 8, clause 8

3. NATIONAL COMMISSION ON NEW TECHNOLOGICAL USES OF
COPYRIGHTED WORKS (CONTU} FINAL REPORT 20-21 (1978)

4. Id.
5. Id.

6. Whelan Associates, Inc. v. Jaslow Dental Laboratory,
Inc., 797 F.2d. 1222, (3d Cir. 1986)

7. Id. at 1248

8. Computer Associates International, Inc. v. Altai, Inc.,

982 F.2d. 693 (2d Cir. 1992)

8. I4.

10. I1d.
11. I4.
12 I4.

13. Lotus Development Inc. v. Paperback Software
International, 740 F.Supp. 37, (D. Mass. 1930)

i4. Id.
i5. Id. at 60
le6. Id.
17. Id.
18. Id. at o8

19. Lotus Development Corporation, v. Borland
International, Inc., 831 F.Supp. 202 (D. Mass 1993)

20. Id4.

21. Apple Computer, Inc. v. Microsoft Corporation, 799
F.Supp. 1006 (N.D. Calif. 19%2)

22. I4.

23. Diamond v. Diehr, 450 U.S. 175, 101 S.CT. 1048, (1981)

24, Id.

25. Arrhythmia Research Technology, Inc. v. Corazonix
Corporation, 958 F.2d. 1053, 22 U.S.P.Q. 1033, (C.A.F.C.
1992)

26. The League for Programming Freedom, Against User
Interface, (1991) (Private Paper)

27. See, e.g. Samuelson, Computer Programs, User
Interfaces, and Section 102(b) of the Copyright Act of
1976: A Critique of Lotus v. Paperback, 55-SPG LCPR 311
28. Baker v. Selden, 101 U.S5. 599, 102-106, (187%)

29. The League for Programming Freedom, Against Software
Patents, at p. 9 (1991) (Private Paper)

30. Patent Number 5,241,671

31. National Law Journal, January 24, 1994, S.1 (Col. 2)
32. 37 C.F.R. 1.530 (b)

33. National Law Journal, March 7, 1994, P.6 {Col. 1)
34. 35 U.S.C. 302

35, Many of the ideas for this section are taken from:
Note, Sui Generis Intellectual Property Protection for

Computer Software, 60 Geo. Wash., Law Rev. 997, (1992)
(authored by John C. Phillips)

